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ABSTRACT

Digital communication systems suffer from the channel distortion problem which introduces
errors due to intersymbol interference. The solution to this problem is provided by equalizers which
use a training sequence to adapt to the channel. However in many cases in which a training sequence
is unfeasible, the channel must be adapted blindly. Most of the blind equalization algorithms known
so far have problems of convergence to local minima. Our intention is to offer an alternative
approach by using extended Kalman filtering and hidden Markov models. They seem to yield more
efficient algorithms which take the statistics of the transmitted sequence into consideration. The
theoretical development of these new algorithms is discussed in this thesis. Also these algorithms
have been simulated under different conditions. The results of simulations and comparisons with

existing systems are provided. The models for simulations are presented as MATLAB codes.
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I. INTRODUCTION

One of the major practical problems in digital communication systems is channel
distortion which causes errors due to intersymbol interference. Since the source signal
is in general broadband, the various frequency components experience different steady
state amplitude and phase changes as they pass through the channel, causing distortion
in the received message. This distortion translates into errors in the received sequence.

Our problem as communication engineers is to restore the transmitted sequence or,
equivalently, to identify the inverse of the channel, given the observed sequence at the
channel output. This task is accomplished by adaptive equalizers.

Typically, adaptive equalizers used in digital communications require an initial
training period, during which a known data sequence is transmitted. A replica of this
sequence is made available at the receiver in proper synchronism with the transmitter,
thereby making it possible for adjustments to be made to the equalizer coefficients in
accordance with the adaptive filtering algorithm employed in the equalizer design. When
the training is completed, the equalizer is switched to its decision directed mode.

However, there are practical situations where it would be highly desirable for a
receiver to be able to achieve complete adaptation without the cooperation of the
transmitter. This can be the case of an unfriendly receiver. Also in the communication
schemes where the channel parameters change with time, such as in mobile

communication systems, a training sequence must be repeated, leading to waste in the




channel utilization. In these cases, the equalization must be performed without a training
sequence. In other words, the receiver is blind to the specific transmitted source
sequence.

The development of a parameter estimation algorithm appropriate for a blind
equalizer adaptation is hindered by the lack of the reference signal by most recursive
schemes. If the source sequence values were known to be independent and identically
distributed (i.e., i.i.d.) this property could be used to restore the output of the channel
by filters designed via estimation theory techniques. The presumption is that proper
deconvolution of the received signal would restore the source’s transmitted sequence.
To provide the reader with a better understanding of our approach to the blind
equalization problem, we will review below the available blind equalization algorithms

and the problems with them.

A. AVAILABLE ALGORITHMS

1. Constant Modulus Adaptive Algorithm (CMA)
In the Constant Modulus Algorithm (CMA), the error between the magnitude
(modulus) of the equalizer output and a constant is recursively minimized, resulting in
an algorithm of complexity similar to the Least Mean Square (LMS). The motivation
for these methods is that by restoring the modulus of the received signal, the channel
impulse response should be implicitly estimated and intersymbol interference removed.

Since the magnitude of the equalizer output is independent of the absolute phase, the cost




functions in these algorithms are independent of the transmitted data sequence, and
hence, they are capable of blind deconvolving the received sequence.
The baseband model of a digital communication system consists of the

cascade connection of a linear communication channel and a blind equalizer, depicted in

Figure (1.1).
s(t)| cHanneL | x(t) | BuND | &)
- F— | EQUALIZER
| at) R bit
g R “
Unobserved Received signal
data sequence

Figure 1.1 Model of Digital Communication System

The channel includes the combined effects of a filter at the transmitter, a
transmission medium, and a filter at the receiver. If we assume it to be linear and time
invariant or slowly varying, it is characterized by an unknown impulse response a (t).
The nature of the impulse response a (t) is determined by the type of the modulation
employed. We may thus describe the input-output relation of the channel by the

convolution sum




x(t)=) a(t) s(t-i) Vvt (1.1)
i

where s (t) is the data sequence applied to the channel input and x (t) is the resulting

channel output. We assume that

Ea,?(t)=1 . (1.2)
i

This implies the use of an automatic gain control (AGC) that keeps the variance of the
channel output x (t) constant.
Let b (t) denote the impulse response of the ideal inverse filter, which is

related to the impulse response a (t) of the channel as follows

Y b(t) a,,(t)=25, (1.3)
k
where &, is the Kronecker delta.

5 = (1.4)

m

1 if m=0
0 if m£Q

An inverse filter defined in this way is "ideal" in the sense that it reconstructs the
transmitted data sequence s (t) correctly.

For the situation described herein, the impulse response a (t) is unknown
and therefore we cannot use Equation (1.3) to determine the inverse filter. Instead we
use an iterative deconvolution procedure to complete an approximate inverse filter

characterized by b ; (t). The index i refers to the tap-weight number in the transversal




filter realization of the approximate filter [Ref.1]. Thus at the nth iteration we have an

approximately deconvolved sequence.

L
y(©)=Y b(t) x(t-i) (1.5)

i=-L
The convolution sum for the ideal inverse filter is infinite in extent in that the index i

ranges from -oo to oo. So we may rewrite Equation (1.5) as follows;

y(£) =Y b,(t) x(t-i), b,(t)=0 for |i|>L
i

or, equivalently

y(£)=Y b, (t) x(t-1)+Y [b,(t)-b] x(t-i) . (1.6)

If we let

v(t) =Y [b,(t)-b] x(t-i), w=0 for |i|>L (1.7)

then we can write
y(t)=x(t)+v(t) (1.8)

where the term v(t) is called "convolutional noise", representing the residual
intersymbol interference that results from the use of an approximate inverse filter.
The inverse filter output y (t) is next applied to a zero memory nonlinear

estimator producing estimate s (t) for the datum s (t) [Ref.1]. We may thus write




8(t)=gly(t)) . (1.9)

Ordinarily, we find that the estimate s(t) is not reliable enough.
Nevertheless, we may use it in an adaptive scheme to obtain a better estimate at iteration
t+1. We have a variety of linear adaptive filtering algorithms to perform this
estimation.

By looking at the problem, we note the following:

B The ith tap input at the transversal filter at iteration t is x (t-1).

® Viewing the nonlinear estimate s (t) as the desired response, and recognizing
that the corresponding transversal filter output is y (t), we may express the estimation

error for the iterative deconvolution procedure as

e(t)= 8(t)- y(t) . (1.10)

® The ith tap weight f:i (t) at iteration t represents an old parameter estimate.
Accordingly, the updated value of ith tap weight at iteration t+1 is

computed as follows
b (t+1)=b,(t) +p x(t-1i) e(t), Vi (1.11)

where u is the step size parameter. Equations (1.5),(1.9),(1.10) and (1.11) constitute the
iterative deconvolution algorithm, known as CMA, for the blind equalization of a real
baseband channel. The ensemble averaged cost function corresponding to the tap weight

update Equation (1.11) is defined by




J(t) =E [ e’(t))
=E [ (8(¢t)-y(t))?] (1.12)
=E [ (g(y(t))-y(t))?] .
2. Decision-Directed Algorithm
Figure (1.2) presents a block diagram of the equalizer using the decision-
directed algorithm. The main difference between this algorithm and the CMA is the type
of zero memory nonlinearity imbedded in the equalizer. Specifically, the conditional

mean estimation of the blind equalizer is replaced by a threshold decision device, i.e.,

8(t)=decly(t)] . (1.13)
/
x(9 : (A S92y
i | ' THRESHOLD
| EQUALIZER————+ Y
| Q | i DECISION
| | "
o LMS )
')

Figure 1.2 Block Diagram of Decision Directed Algorithm




For Binary Phase Shift Keying (BPSK) we may write

s(t) ={ r1 forsymboll (1.14)
-1 for symbol 0
SO
decly(t)])=sgnly(t)] (1.15)

where sgn (.) is the signum function.

The Sato and Godard algorithms [Ref.1], which are generally used in

practice, are special cases of the CMA and decision-directed algorithms. For the Sato

Algorithm the zero memory nonlinear function can be shown to be

8(t)=+v sgnly(t)] (1.16)

where
. El[s*(t)] 1.17
Y Es077 ( )

For the Godard algorithm the zero memory nonlinear function is defined as
= Y( t) p-1. 2p-1
8(t) W[ly(t)hxp ly(t) |P'-|y(e) |#7] (1.18)

where p is a positive integer, and Ry, is a positive real constant defined by

R- El|s(t) |1 (1.19)
El|s(t) |7}




3. Higher-Order Moments
A different approach is to use higher order inoments. Just to give the general
idea, we know that the data sequence s (t) transmitted through the channel is non-

gaussian. But the output sequence x (t),

x(t) =) a/(t) s(t-i) V¢t
i

defined in Equation (1.1), tends to be Gaussian if the length of the impulse response is
long enough (or at least more Gaussian than s (t) ). It turns out that the Gaussianity
of a sequence can be measured by the Kurtosis K (x (t) ) associated with x (t) [Ref.2],

defined as

(1.23)
Kix(t))=E {{x(t)|* }-2 B> {{x(t)|* }-|E {x(£)? }?,

which uses the higher order moments of x (t). It can be shown that K (x (t) ) =0 if and
only if x (t) is Gaussian. We can construct an algorithm by using the Kurtosis where
the impulse response of the equalizer b (¢t is such that the filtered signal s (t) has a

maximum Kurtosis.

8(t) =) b,(t) x(t-i) (1.24)
i

The maximization is very non-linear, and more information can be found in [Ref.2].




B. PROBLEMS WITH THE EXISTING ALGORITHMS

1. Convergence to Local Minima
One of the major problems in the algorithms based on CMA, is convergence

to local minima. The ensemble averaged cost function is defined by Equation (1.12),

J(t)=E [ (g(y(t))-y(t))?]

where y (t) denotes the received sequence defined by Equation (1.5). In the linear case
of the LMS algorithm, the cost function is a quadratic (convex) function of the tap
weights and therefore has a unique minimum. By contrast, the cost function J(t) of
Equation (1.12) is a nonconvex function of the tap weights. This means that, in general,
the error performance surface of the iterative deconvolution procedure described herein
may have more than one local minimum. The nonconvexity of the cost function J(t)
arises from the fact that the estimate s (t), is produced by passing the linear combiner
output y (t) through a zero memory nonlinearity, and also because of y (t) itself a
function of the tap weights.

Therefore, nonoptimum fit of the convergent equalizer to the channel inverse
occurs, which lead us to low performance of the overall system. Many case studies have
been shown in [Ref.3]. Different algorithms have been tried, error functions have been
derived and the results have been shown as plots.

Also, if the channel drifts considerably, any decision-directed algorithm

looses track of the channel. So, their usage is limited in varying channel conditions.

10




In this thesis we address the problem of applying optimal estimation
techniques to the blind equalization problem. In Chapter II we introduce an algorithm
that uses extended Kalman filtering, in Chapter Il we discuss an alternate approach
which requires a bank of parallel Kalman filters, and in Chapter IV we consider a new
algorithm by using the hidden Markov models as well as the extended Kalman filtering,

that combines the equalizer with the decoder.

11




II. CMA LIKE BLIND EQUALIZATION ALGORITHMS BY
USING EXTENDED KALMAN FILTERING

As we have discussed in the previous chapter blind equalization is an iterative
process mostly based on the optimal performance of prediction-error-based recursive
identifiers. Since local convergence and channel drifting constitute a problem to be
addressed; the effectiveness of the algorithms based on CMA, which are known so far,
is still object of discussion. These facts lead us to consider a class of blind equalization
algorithms based on a Kalman filtering approach. One of the approaches is essentially
a variation of the CMA algorithm which has been discussed previously. Since the
Kalman filter is used for a linear model of the signal, the use of the extended Kalman
filter which takes nonlinearities into account, and can still be used effectively in nonlinear
and linear models, is considered. By this approach, we hope to address the local
convergence problem, which is the main concen for the CMA algorithms. Before
presenting our approach we will briefly describe the derivation of the Kalman and
Extended Kalman Filter equations, in order to help to understand the main idea behind

the new algorithm.

12




A. AN OUTLINE OF THE USE OF KALMAN FILTERS FOR STATE

ESTIMATION (DISCRETE TIME CASE)

1. Derivation of the Kalman Filter Equations
We consider the estimation of the states of a system as represented by a

system dynamics model of the form

x(t+1) =Ax(t) +B.s(t) +w(t) 2.1)

y(t)=Cx(t) +v(t) 2.2)

in which w(t) represents a zero mean white noise disturbance intensity, and v(t) is
a zero mean white noise corrupting the sensor measurement signals, y (t). Their

autocorrelations are given by

Elw(t)];Elw(t)wT(t)]= Q. & (m)
E[v(t)];E[v(t)vT(t)]= R, &(m)

2.3)

where R, and Q. are positive definite matrices and 8 (m) is the discrete-time impulse

function.

.
5 (m) ={ roE om0 2.4
0 if m#0

The term s (t) represents the system input, also A., B, and C, are matrices of

appropriate dimension and possibly time varying.

13




To develop a filter that is recursive for real time applications we define the
following algorithm.
STEP 1 : Prediction of the state estimate based on the model and the

corresponding new measurement, fr (t).
R(t+1|t) =A.R(t|t) +B.s(t) 2.5

STEP 2 : Update the estimation errors covariance matrix, P,.
P (t+1|t) =A.P, (t|t)Al+Q, (2.6)

STEP 3 : Recompute the correction (Kalman) gain, K,.
K, (t+1) =P (t+1|t) ¢l [CP (t+1|t) CS+R,] 1 2.7

Here we can see that K, is determined by A,, C,, Q, and R, only, not by the
measurement, y (t).
STEP 4 : Correction of estimate, based on the error between the new

measurement y (t+1) and its prediction, at time t+1.

P(t+1|k) =CR(t+1]|¢t) 2.8

R(t+1|t+1) =R(t+1|t) +K, (t+1) [y(t+1) -p(t+1]t)] 2.9
STEP S : Correct the estimation errors covariance matrix, P,.
P (t+1l|t+1) =[I-K.(t+1) C,) P (t+1]|t) (2.10)

Also initial conditions must be chosen carefully where

14




2(0}0)=E[x(0)] 2.11)

is the best estimate at t=0 and,

Py=covix(0)] =E [{x(0) -2(0]0) Hx (0) -2(0]0)}T =027  (2.12)

is a positive definite matrix generally in diagonal form. It shows the confidence on

initial conditions.

2. The Extended Kalman Filter Equations
The Kalman Filter was derived for the case of linear state and measurement
equations. This filter can be generalized to operate for nonlinear state equations and
measurement equations in a simple manner. This generalization will be referred to as
the Extended Kalman Filter.

A general non-linear system is in the form

x(t+1) =£(x(t),s(t),w(t),t)
y(t+1) =£(x(t),v(t),t)

where all the variables are consistent with the linear case. Then,

E[(w(t)];E[w(t)wT(t)]= Q. & (m)
E[v(t)];Elv(t)vT(t)]= R, & (m)

are also valid for this case. The Kalman filtering algorithm can be modified to account

for the nonlinearities as follows:

15




R(t+1]t) =£(R(¢t|t), s(t),0, )

P (t+1|t)=AP (t|t)AS+Q,

where

Of(x(t),s(E), wit), &) . ..

A % (6) g aists
STEP 3 ;
K, (t+1) =P (t+1|t)CT[E P, (t+1|t)CT+D R HT]?

where

& =99(x(t),v(t),t) | , o

¢ ax(0) ety
and

H.-0g(x(t), v(t),¢t)
¢ av(t)

|x(e) =2(¢t)e)
v(t) =0

STEP 4 :

P(t+1]k) =g(R(t+1]|t),0,¢t)

R(t+1|t+1) =R(t+1|t) +K, (t+1) [y{t+1) -p(t+1]|t)]

16
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(2.16)

.17

(2.18)

(2.19)




STEP S :
P (t+1|t+1) =[I-K, (t+1) &) P, (t+1]t) \2.20)
for the initial conditions
2(0]0)=E[x(0)]
and

P,=cov[x(0)]

B. SOLUTION TO BLIND EQUALIZATION PROBLEM BY KALMAN
w FILTERING
| In this section we show how the extended Kalman filtering can be applied for blind
equalization. Let X, be the received signal, and W, be the weights of the equalizer. The

purpose of the equalizer is to restore the original information sequence, i.e.,
Ye=§e=st

For a binary phase shift keying (BPSK) signal S, € {+1,-1} and the optimal
equalization is achieved when / Ye / 221. Assuming the weights constant in time, we

can write a state space equation for the observations as

17




N (t+1) =W, (t)

Iy |2=WE () X, () XF () W, (E) .

2.21)

2.22)

As we can see, Equations (2.21) and (2.22) are similar to Equations (2.1) and (2.2) with

added nonlinearity.

By applying the extended Kalman f’Iter approach to the blind equalization, the new

algorithm becomes as follows:

Initial Conditions:
2(0]0)=E[x(0)]
P,=cov[x(0)]=0lI
STEP 1 :
W(t+1|k)=W(t)
TEP 2 :

B, (t+1|t)=1B,(t|t)IT
since

2 =af(W(t) .0,0,¢) =
Ae ow(t) I

18

2.23)

(2.29)

(2.25)




K, (t+1) =P, (t+1|t) @F[E. P, (t+1]|t) CF+d) (2.26)
where
8290l 0.8 2w (01 7[x, (8] [x,(0)]7  @27)
_dg(w(t),0,¢t) _ .
b, A6 0 (2.28)

A small error is needed for the Kalman filter in order to work properly, so a scaler value

d is added to the Kalman gain calculation at this step.

STEP 4 :
P2 (t+1]t) =W () X (t) XT(t) W (L) 2.29)
W (t+1]t+1) =W, (t+1]|t) +R (t+1) [1-P,(t+1|t)?] 2.30)
STEP 5 :
P (t+1|t+1)=[I-X,(t+1) )P, (t+1]t) 2.31)

C. FEASIBILITY OF THE BLIND EQUALIZATION BY KALMAN FILTERING
As we stated earlier, an admissible source-channel-equalizer combination need not

always result in an optimum fit of the convergent equalizer to the channel inverse. So,

19




we need to study the average behavior of the Kalman Filtering Equalizer algorithm. In
this chapter we will consider only linear, time-invariant, stable, channel models and
binary real sources, as in [Ref.3]. The same steps have been followed, in order to make
a reasonable comparison for our new algorithm.

Figure (2.1) is an illustration of the performance with various fixed equalizer
parametrizations. A zero-mean, binary input sequence s (t) is applied to a channel.
The received signal x (t) is passed through the equalizer. To provide a sense of
“recent average" performance, the sequence of instantaneous squared recovery errors
between s and § is observed. An average squared error of zero or four denotes perfect
performance for a differentially encoded signal and an average squared error greater than

0.4 but less than 3.6 indicates a practically unacceptable error rate of over 10%.

5
4 (A)-1,0.8) ®)[-1,0)
)
x
53:’ 3
=
EPA
1t
©)1,0.1) D)[1.-0.8}
0
-1 i 2 L "
0 100 200 300 400 500
Iterations

Figure 2.1 Smoothed Squared-Recovery-Error Time Histories for Different Fixed Equalizer
Parametrizations [( b, , b, )]
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In Figure (2.1) all (b,,b,) settings (1,-0.8), (-1,0.8), (-1,0) and (1,-0.1) result in
perfect performance . The squared recovery errors associated with (1,-0.8) and (1,-0.1)
are perfectly zeroed. The squared recovery error of 4 associated with (-1,0.8) and (-1,0),
helps provide the exact negative of s as s at each sample instant. If this figure is
compared with [Ref.3:Fig.3], it can be seen that the exponential rise does not appear for
the Kalman filtering algorithm since we did not use a smoothing filter. Also a (b,,b;)
setting of (0,1) can not be seen in Figure (2.1) since in this case the model is
undetermined.

As a second step, the performance of the Kalman filtering algorithm for different
initializations is studied. The (b,,b,) setting of (1,-0.6) is used for the equalizer then the
initial values on a circle of radius 2 is applied to the system. The results are shown in

Figure (2.2). If compared to [Ref.3:Fig.S and 6] the Kalman filter does not exhibit the
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Figure 2.2 Parameter Trajectories for Blind Equalizer Adaptation by Kalman Filtering (Initial
Values on the Circle of Radius 2,Final Values in Black Boxes,Local Minima Are Small)
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amount of local minima shown by other CMA algorithms. For most of the initial
conditions the parameter vector converges to the global minima.

For a perfect solution to the problem, we need to understand the behavior of the
algorithm whea convergence to local minima occurs. If we initialize (b,,b,) at (0,2) the
algorithm converges to a global minimum. The normalized squared recovery errors
between s and ¢ for this case show a distribution equivalent to N(0,1). The situation is

shown in Figure (2.3).

0.4
mean=-0.1829 ;
03 var=1.492 i
0.2 !
0.1} 3,
R
‘ AN
-30 -20 -10 0 10

Figure 2.3 Distribution of Squared Recovery Errors When Algorithm Globally Converges

Also, we can see from Figure (2.2) that there are initial conditions which lead to
local. minima. As in the example of initialization (0.6,-1.9), the algorithm converges to
local minimum. In this case, the normalized squared error between s and $ has a larger

mean and variance than the first case. Also, it does not show a normal situation. The
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situation is shown in Figure (2.4). This property can be used to determine the

convergence to a local minimum.
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Figure 2.4 Distribution of Squared Recovery Errors When Algorithm Locally Converges

The studies up to this step show that blind equalization algorithms using Kalman
filtering seem to work better than other algorithms in terms of convergence rate for
linear, time invariant, stable channel models and binary sources using BPSK. However

they still suffer from the local cinvergence problem as seen for the CMA algorithms.
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III. BLIND EQUALIZATION ALGORITHM BY USING
PARALLEL KALMAN FILTERING

As seen in the previous chapter, the algorithm based on the extended Kalman filter
for blind equalization, suffers from the local convergence problem, as most of the other
CMA algorithms. For the algorithm to be applicable, we need to address this problem.
As a candidate solution we choose a particular parallel Kalman filtering approach, which
is described in detail in [Ref.4]. In this chapter, we will present this algorithm and

discuss the results of our studies with this algorithm.

A. DEVELOPMENT OF THE PARALLEL KALMAN FILTERING

ALGORITHM

This algorithm is an approximation to the optimum maximum a posteriori (MAP)
sequence estimator for a priori unknown channels. The sequence probabilities can be
computed using the innovations derived from a bank of Kalman filters.

In the discrete-time channel and signal model, x (t) denotes the output of a
matched filter at time t, s (t) is the current transmitted symbol and {a, (t) } represent
the effective time varying channel coefficients. For BPSK, the s (t) are real valued,
taking on values {+1,-1}. The channel coefficients a,, (t) represent the convolution of
the actual intersymbol interference (ISI) channel impulse response with that of a
prewhitening filter, which is included to insure that the additive noise samples, n (t),

are uncorrelated.
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Nb
x(t)=Y a,(t) s(t-n)+ n(t) (3.1)
n=0

The additive noise sequence is complex white Gaussian with variance ¢, and N, +1 is
the length of the channel impulse response.

For convenience in the derivation, the following sequences are also defined for the
ith of M*™*! possible sequences, where M is the symbol alphabet size:

The cumulative measurement sequence,
X={x(t),x(t-1),...,x(0)}
A cumulative data sequence,
D,={d,(t),d(t-1),...,d;(0)}

A data subsequence, comprising the data symbols associated with the channel

coefficient vector g (t) at time t,
D, n={d(t),d(t-1),...,d(t-N,)}.

In the development of the Kalman filter channel estimator, it is assumed that the

coefficient b, (t) evolve according to the following complex Gaussian

autoregressive(AR) process model
b(t+l) =F b(t) +w(t) , (3.2)

with the coefficient vector defined by
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b(t)=[ b (t),b(t-1),...,b, (0)]17 .

In Equation(3.2) F is the one step transition matrix and w(t) is a white Gaussian
process with covariance matrix Q.
The optimum MAP sequence estimator can be written in the following recursive

form for the assumed channel and signal models
P(D,1X) =2 p(x(£) |D,,X.) PO 1%,  (3.3)

for i=1,2,...,M'*!, where p (D; .|X,) represents the probability of the ith possible
data sequence given cumulative measurements X,, and c is a normalization constant.
The likelihood p (x (t) | D; .,X,) is given in terms of the Kalman filter innovations

as

p(x(t)|D,,X.,)=N(5(t),d (t]t-1)) , (3.4)

where N(x, 0,2) denotes a Gaussian density with mean x and covariance 0,2. The
estimated signal &; (t), is given in terms of the conditional channel estimates according
to
N,
é,(t)=§5,.,,<t|t-1) d (t-n) , (3.5)

where 5,;, n(t]t-1) is generated by the Kalman filter equations discussed in Chapter
I. The estimate Bi,n (t]t-1) can be shown to be exactly equal to the conditional
mean of the channel coefficients a, (t), under the AR process model in Equation(3.2)

when conditioned on data sequence D; .. Thus,
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b, t|t-1)=E(b,(t) | D, X1 . (3.6)

From Equations (3.3) and (3.4), it is seen that the optimum MAP sequence
estimator requires a bank of M'*! Kalman filter channel estimators, each conditioned on
a different D; .. The MAP probabilities of each sequence are then obtained as a product
of the corresponding innovations likelihoods.

By using the concept of reduced state sequence estimation (RSEE), the algorithm
becomes as follows (more detailed derivation can be found in [Ref.4]):

i.  Define observation vectors
h(t)=[d(t),d(t-1),...,d,(t-N,)] (3.7)
ii. Compute conditional innovations covariances

ol (t| t-1) =h,(t) h'(t)+ o> (3.8)

ili. Compute signal estimates

N)
8,(t)=Y B, (t|t-1) d,(t-n) (3.9)
n=0
iv. Compute conditional measurement update

o

b(t|t)=b,(t|t-1)+—=
o; (t] t-1)

hT(t) (x(t)-8,(t)) (3.10)
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v.  Update weighing probabilities

P(D,,|X) =2N(8,(t) ,a}(t]t-1)) ¥ p(D,xl%.)
’ D, D, (3.11)

vi. Compute one step predictions

a a (D, v |X)
b(t+1|t)= Y b(t|e) P ha | % (3.12)
FD,y0 Dy, E P(Dy 5 | X,)
m:D_ D,

CPE N VW N

B. ADMISSIBILITY OF THE BLIND EQUALIZATION BY PARALLEL
KALMAN FILTERING
In order to be consistent with the comparison of the algorithms, we will consider
only linear, time invariant, stable, channel models and BPSK. Then, s(t) € {+1,-1}
therefore M=2 ,and the length of the channel impulse response is N,+1=3 (assumed).
Now M™*1=23=8 different observations are needed. These are:
hy(t)={1,-1,-1}
h (t)={1,-1,+1}
h(t)=§f1,+1, -1}
hy(t) =f1,+1, +1}
h (t)=f{1,-1,-1}
hy(t) =fr1, -1, +1}

hy(t)={1,+1,-1}
h,(t) =fr1, +1, +1}

Assuming ¢,>=0.01 (small) and a=1 (according to [Ref.4] 0<a<?2), also
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_(x(t)-5,(£))2

N(8,(t), o2 (t]t-1)) = 1 (3.13)

2 —
V2mol (£ £-1) 20, (t]£-1)

Substitution of all these parameters into the algorithm discussed in Section A yields the
performance with various fixed equalizer parametrization, which is shown in Figure
3.1).
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Figure 3.1 Smoothed Squared-Recovery-Error Time Histories for Different Fixed Equalizer
Parametrizations [(b, ,b,)]

In Figure (3.1) all (by,b,) settings result in perfect performance though H(z) #1.

Also, the phase ambiguity problem which occurs in the extended Kalman filtering

29




algorithm is solved. The exponential rise does not appear since we did not use a
smoothing filter, and (by,b,) setting (0,1) does not appear in the figure since the model
is undetermined for this case.

The performance of the algorithm for different initializations and the (by,b,) setting
of (1,-0.6) is also studied. The initial values are shown as (x) and the final values are
shown as (o) in Figure (3.2). There is no convergence to local minima for the model,

so optimum results are achieved.

_2 L X N X i
-2 -1 0 1 2

b0

Figure 3.2 Parameters Initial and Final Values for Blind Equalizer Adaptation by Parallel Kalman
Filtering

However, during our studies we observed that this algorithm does not work

properly all the time. It fails to converge to global minima 60% of the time. Also, it
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can not work as well as the extended Kalman filtering appreach in nonminimum phase
systems. When the algorithm converges to local minima, there is no way to determine
the situation with this algorithm as in the Kalman filtering approach. So the algorithm
becomes unreliable, since we can not decide whether the global minima have been
reached or not by any means. The usage of multiple Kalman filters is another

disadvantage of this algorithm, when the cost is considered.
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IV. APPLICATION OF HIDDEN MARKOV MODELS TO BLIND

EQUALIZATION ALGORITHMS WITH KALMAN FILTERING

In communication systems the transmitted sequence s (t) is not a random
independent identically distributed (i.i.d.) sequence. Indeed forward error correction
(FEC) coding is applied to a message sequence u(t), in order to produce the
transmitted sequence s (t). At this point we realized that, none of the algorithms
known so far uses the statistics of the transmitted sequence s (t), which might be useful
for the channel equalization. Obviously, if we decide to use the statistics of the
transmitted sequence s (t) in equalization, we can combine the equalizer with the FEC
decoder. It is a fact that, most of the FEC coding systems which are used in
communication systems, are convolutional coders and decoders. They mostly use the
Viterbi soft decoding technique, which is an optimum estimation for Markov models.
So in our new approach we will try to combine the Kalman filtering algorithm with

hidden Markov models.

A. HIDDEN MARKOV MODELS

Consider a system that may be described at any time as being in one of a set of N
distinct states indexed by {1,2,3,...,N}. At regularly spaced, discrete times, the system
undergoes a change of state according to a set of probabilities associated with the state.

We denote the time instants associated with state changes as t=1,2,3,... , and we denote
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the actual state at time t as q,. For a discrete time, first order, Markov model, the

probabilistic dependence is truncated to just the preceding state.
plg=jlg.=i, g.,=k, @,=1, ...1=plg,=jlq.,=1] (4.1)
Furthermore, those processes in which the right hand side of Equation (4.1) is
independent of time, lead to the set of state transition probabilities a; ; of the form

a,=plqg=jlq.=1il , 1<i, jsN (4.2)

with the following properties

N (4.3)

The notation:
m=plg,=1] 1sisN (4.4)

is used to denote the initial state probabilities.

The concept of Markov models can be extended to include the case in which the
observation is a probabilistic function of the state, so the resulting model (which is called
a hidden Markov model) is a doubly embedded stochastic process with an underlying
stochastic process that is not directly observable (it is hidden) but can be observed only
through another set of stochastic processes that produce the sequence of observations.
As a result a hidden Markov model (HMM) for discrete symbol observations can be

characterized by the following elements:
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i). N, the number of states in the model,

if). M, the number of distinct observation symbols per state. We denote the

individual symbols as

V= (v, Vo, V3, ..., Vy)

iif). The state transition probability matrix A={a;;} where
a;,=plq. =il g=1] 1<i, jsN (4.5)
iv). The observation symbol probability distribution, B={b, (k) }, in which
b(k)=plo=v;]g=j] 1sksM (4.6)

defines the symbol distribution in state j, where j=1,2,3,...,N. Also a typical
observation sequence of the model can be shown as
0={0;,05,03,...,07}
v). The initial state distribution 7= {x;} in which

m,=plg,=1i] 1<isN (4.7)

So a complete specification of a HMM requires specification of two model
parameters, N and M, specification of observation symbols, O, and the specification of

the three sets of probability measures A, Band 7. The compact notation
A=(A,B, ) (4.8)

' is used to indicate the complete parameter set of model. Given the appropriate values
of N, M, A, B and n, the HMM can be used as a generator to give an observation

sequence
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0=(0,,0;,05, ...,0¢) (4.9)

where each observation o, is one of the symbols from V, and T is the number of
observations in the sequence. This model is the main model used for FEC coding, and
it works as follows:
1. Choose an initial state q,=1 according to the initial state distribution =,
2. Set t=1,
3.  Choose o=V according to the symbol probability distribution in state i, i.e.,
b; (k),
4. Transit to a new state q,,,=J according to the state transition probability
distribution for state i, i.e., a;;,
5.  Set t=t+1; return to step 3 if t<T; otherwise, terminate the procedure.
Now, let us approach the problem from our point of view. We have the
observation sequence O, which is produced by the model, described above, and we know
the model A. We need to choose a corresponding state sequence g= (q;, g5, - - ., G,/
that is optimal in some sense (i.e., best explains the observations).

We can define the posteriori probability as

plo,g=i|\] _ pl0o,g=i|\]

[OTN] N 4.10
prol Y plo,g=i|\] ( :

i=i

v,(1)=plg=1i]0,\] =

Using v, (i) we can solve for the individually most likely state g, * at time t, as

35




g’ =arg min, .y [v,(1)) 1stsT (4.11)

Using this criteria iteratively the single best state sequence (path) can be found.
To find the single best state sequence q, for the given observation sequence O, we need

to define the quantity

, , (4.12)
o (i)=max, . plg. &, - -:19.4,851,0,,0, ...,0]|A]

that is the best score (highest probability) along the single path, at time t, which
accounts for the first t observations and ends in state i. By induction we can compute

it recursively as
6,(1)=max; §,,(j) plg=1|q.=j] plo|g=1] (4.13)

To actually retrieve the state sequence, we need to keep track of the argument that
maximized Equation (4.13), for each t and j. The formal technique for doing the job

is based on dynamic programming methods, and is called the Viterbi algorithm. [Ref.5]

B. COMBINING KALMAN FILTERING ALGORITHMS WITH HMM

In general, a message sequence u (t) is coded by a HMM. The block diagram
of an overall communication scheme is shown in Figure (4.1). The discrete coder states
z (t) where z(t)ez={1,2,3,...,L} and the output sequence s (t) are dependent

on the older coder states and the input sequence u (t) to the coder. Thus,

z(t+l) = Flz(t),u(t)]
s(t)=Glz(t),u(t)]

(4.14)
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Figure 4.1 Block Diagram of the Communication System

As we stated in Chapter II before; the vector X, represents the received signal values

and the vector W, represents the state coefficients of the equalizer. So we can show the

output of the equalizer as

y(t)=5(t)= W (t) X, (t)+ e(t)

where e (t) is estimation error described in Chapter 1.

In extended Kalman filtering approach we assumed the channel changes slowly and

the model is defined in Equation (2.21). We account for drifts in channel parameters by

the recursion
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W,(t+1) =W, (t) +v(t) (4.16)

Then combining the Equations (4.14), (4.15), and (4.16) we can represent the overall

model of equalizer and decoder as

z(t+l)= Flz(t),u(t)]
W,(t+l) =W, (t) +v(t) (4.17)

0= Glz(t),u(t)]- W (t) X (t)+ e(t)
The difficulty with this state space model is that the state [Z (t),W(t)] is a
mixture of a discrete component Z (t) and a continuous one W(t).
The estimation algorithm is based on the fact that, given the sequences
Zt)=[z(1),z(2)....,z(]
Y ()=[y(1),y(2)....,y(®]

the estimate of w
W=ElwW | 2, Y (4.18)

is well defined, and recursively computable by standard Kalman filtering techniques.
An overall recursion along the same lines as the estimation for hidden Markov
models can be devised for this case.

The suboptimal optimization is based on the definition

6,(i)=max, p(Z/(t-1),z(t)=1,Y,(t)) (4.19)

where Qtj (t-1) is the optimum path up to state z (t-1)=7j. By induction we can

update 6, (i) as
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6,(1) =max, [p(y(t)|Z],(t-1),2z(t)=i,Y,(t-1))p(z(t)=i|z(t-1)=5)6,,(J)]
(4.20)
and keep track of the indices on the optimal path

e

j=arg max [p(y(t) |2, (t-1),z(t)=1,Y,(t-1))p(z(t)=i|z(t-1)=5)6,, ()]
(4.21)
The optimal path up to state z(z)=i is then updated as

Zl(e)=2,(t-1) U =z(t) =i (4.22)
Also we know all the possible previous states j and the state coefficient estimates of the
channel up to this state w,,(j) is already computed by Kalman filtering as stated in

Equation (4.18). So we can determine the optimum estimates of the channel state

coefficients by the following procedure:

W (1]F) =W, (3)+ x4 [GlF,ult)]- BL(F) X (t)+ e(t) (4.23)

W (i) =most likely, W,(i|3j)

C. FEASIBILITY OF HMM AND KAILMAN FILTERING APPROACH TO
BLIND EQUALIZATION
This new algorithm works almost perfect in linear, time invariant, stable, channel
models and BPSK. This new algorithm seems to be more capable than the previous
ones, and we applied it to more complex channels. We have used different feasible FEC

encoders (with different rates and constraint lengths), BPSK signaling, additive white
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Gaussian noise (AWGN) and different signal to noise ratios (SNR) in the studies. The
results are presented in Figures (4.2) through (4.4).
Since the perfect equalization requires
at) *b) =1 ,
the complete impulse response of the combination of the channel and the equalizer must
appear as an impulse function, which is the case in our studies (shown at the left upper
comer of the figures).

By looking at the results, this new algorithm recovers the sent message without
errors after a couple of iterations, which are very small compared to the length of the
transmitted sequence. This algorithm works much better in high SNR values. Errors
do occur if SNR drops under 5 dB. but further studies are needed to determine the exact
margin. With this kind of performance, this algorithm can also be a candidate to address

the channel drifting problem.
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Figure 4.2 Channel and Message Estimation for Rate=1/2,Con.Len=3 Encoder with High SNR
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Figure 4.3 Channel and Message Estimation for Rate=1/3, Con.Len=3 Encoder with High SNR
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Figure 4.4 Channel and Message Estimation for Rate=1/2,Con.Len=7 Encoder with High SNR
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V. SIMULATION AND RESULTS

We have simulated a flat Rayleigh fading channel and tried our new algorithm on
it, in order to see its feasibility in overall communication systems. The block diagram

of our simulation scheme is shown in Figure (5.1).

| CHANNEL
FADING

L

DIFFER. FEC L— PSK PSK SAIPLERF EQUAL.

SOURCE ) cucooen—| encoven woour. | | (ﬁ  0emoout. || ik 10l pecoven

|__0__ AWGN

GENERAT.

["a cranneL
[ _ranme

Figure 5.1 Block Diagram of the Simulation Scheme with DBPSK and Flat Rayleigh Fading

In the simulation DBPSK is used as a modulation scheme. DBPSK has hardware
simplicity and does not require phase coherency. It is popular for channels where the

phase shift changes slowly compared to the bit duration.
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Also the industrial standard FEC encoder, with rate 1/2, constraint length 7 and
(133,171), connections is employed. The encoder and its connections are illustrated in

Figure (5.2).

INPUT H H K F

Figure 5.2 Convolutional Encoder Rate=1/2, Con.Len.=7

The flat Rayleigh fading channel model is also used and illustrated in Figure (5.3).
This model corresponds to a single path Rayleigh fading channel. In this channel there
is no frequency selective distortion, and the channel is very suitable to represent mobile
communication schemes. More detailed explanation about this model and its

computational representation can be found in [Ref.6].
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Figure 5.3 Block Diagram of Flat Rayleigh Fading Channel Model

The results of the simulation using a signal to noise ratio (SNR) of 13 dB. is given
in Figure (5.4). As it can be seen from the results of our simulation, the combination
of equalizer and decoder by HMM and Kalman filtering approach performs fairly good

in complex channels and under channel fading conditions.

46




T T T RS T T
0. 7
£ 4
i i il i i

0 5 0 15 20 25 % 3 40 45 60
7 received message
0 5 10 15 2 25 30 35 4 45 80
oITors
1.} 1
. \ _
1
L i
-o; \ -
{
o 5 0 15 20 25 8 35 4 45 50

Figure 5.4 Estimation of the Message Sequence in Flat Rayleigh Fading Channel Using DBPSK
and Rate=1/2 FEC Code
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VI. CONCLUSIONS

An altemative algorithm for blind equalization of digital communication channels,
is derived and studied by using extended Kalman filtering and hidden Markov models.
This new algorithm seems more efficient since it takes the statistics of the transmitted
sequence into consideration. It seems to be more robust with respect to local minima,
and channel drifting problems.

Hardware implementation of this algorithm might be cost effective since it
combines two major components of a receiver, namely the equalizer and the decoder into
a single component.

Future studies can determine the overall performance of this algorithm under

different channel conditions and for different communication schemes.
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APPENDIX A. MATLAB SOURCE CODES

The algorithms described in Chapters II,III and IV were implemented using

MATLAB software and are listed below.

A. BLIND EQUALIZER FOR LINEAR, TIME-INVARIANT, STABLE
CHANNELS BY USING EXTENDED KAIMAN FILTER

% Filename : eqgkalm.m

% Title : Blind equalizer for linear time-invariant,stable channels by using Kalman filtering

% algorithm

% Date of last revision : 15 Jul 1993

% Comments : This program produces an array of random digital signal values,
(either + or -1) to represent the message signal.The length of message signal
depends on the sampling amount m(of course bigger m makes better
estimation). Then this signal is applied to a channel such as:[x(t) x(t-1) ...
x(t-n)] where the coefficiants defined by user.To estimate the equalizer
coefficiants, a rectangular window over the received signal values, is going to
be used such as{x(t) x(t-1) ... x(t-n)] where (n+1) represents the # of values
taken into account by the window (and by the equalizer).In this way program
tries to predict real coefficients of channel.If values match equalizer design
will be perfect.
Averaged squared recovery error due to the channel and qualizer,performance
due to the different initializations and normalized squared error distributions
can be plotted.

Input variables :
f : The coefficients of the channel as a vector
m : Sampling amount
wt: Initial values of the coefficients at the equalizer as a column vector
sel: Selection to continue with the calculation
op: Options to plot different schemes

% Output variables :

% b : The estimated values of the channel coefficients by equalizer

% Associated functions : None

NAANAARANRARAIRNRNANARRRRN

clear;

f=inputCNOW ENTER the coefficients of your channel as vector.:’);
m=input’ ENTER the value of m (sampling amount)...................");
sel=input" ENTER 1 to continue.................»");
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% % % Produce message % % %

n=length(f)-1;
y=sign(randn(1,(m+n)));

while sel==1
wt=_.01%ones((n+ 1),(m+n));
wt(:,n)=inputCENTER the initial coefficiants for your equalizer as column vector..:");
% %% Arrangements % % %
xt==zeros((n+1),1);
et=zeros(1,m);
errt=zeros(1,m);
ay=eye((n+1),(n+1));
pt=diag({le-1,1e-1]);
x=zeros(l,(n+1));
% % % Pass message through the channel % % %
for i=n+1:m+n
x(i)=(-f(2:n+1).*x(i-1:-1:i-n) + y(i))/f(1);
end
% % % Kalman filtering % % %
for j=n+1:m+n
xt=(x(j:-1:j-n))’;
wtl=ay*wt(:,j-1);
yt1 =wt(:,j-1)" *xt*xt’ *wt(:,j-1);
c=2*wt(:,j-1)"*xt*xt’;
ptl=ay*pt*ay’;
gt=pti*c'*inv(c*ptl *c’+.01);
pt=(ay-(gt*c))*pt1;
wi(:,j)=wtl +(gt*(1-yt1));
et(:,j-n)=1-ytl;
errt(;,j-n)=et(:,j-n)/sqri(c*pt*c’ +.01);
end
%% % Results %% %
b=wt(;,m+n)’
pause
% % % Estimation errors % % %
for k=n+1:n+m
r(k)=®(1:n+1)*x(k:-1:k-n)’);
s(k)=(y(k)-r(k))"2;
end
%% % Plots %% %
disp(For the graphs you have the following options:’);
dispCENTER 1 to see aver. squ. error due to the chan. & equa.’);
dispCENTER 2 to see performance due to the different initializations’);
dispCENTER 3 to see normalized squared error distributions’);
op=inputCENTER 0 to quit.........:");
while op==1,
plot(s(n+ 1:n+m))
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grid;

xlabel(’Iterations’);

ylabel( (uk)-u(k)) ');

pause

disp(’For the graphs you have the following options:’);

dispCENTER 2 to see performance due to the different initializations’);
dispCENTER 3 to see normalized squared error distributions’);

op=inputCENTER 0 to quit..........");
end
while op==2,

axis([-2 2 -2 2]);
plot(wt(1,:),wt(2,:))
grid;
xlabel(’b0’);
ylabel(’b1’);
pause
disp(’For the graphs you have the following options:’);
dispCENTER 1 to see aver. squ. error due to the chan. & equa.’);
'dispCENTER 3 to see normalized squared error distributions’);
op=inputCENTER 0 to quit......... )

end

while op= =3,
[n2,x2]=hist(errt,30);
k2=-4:.01:4;
gt=1/sqrt(2*pi)*exp((-(k2.%2))/2);

=max(gt);

[xb2,yb2] =bar(x2,((n2/max(n2))*m2));
plot(k2,gt,xb2,yb2);
ort=mean(errt);
var=(std(errt)"2);
gtext(’mean=",num2str(ort)]);
gtext([’var =",num2str(var)]);
pause
disp(’For the graphs you have the following options:’);
dispCENTER 1 to see aver. squ. error due to the chan. & equa.’);
dispCENTER 2 to see performance due to the different initializations);

op=inputCENTER 0 to quit......... )
end
dispC ENTER 0 to exit to matlab................. )
sel=input’ ENTER 1 to continue................. %
end
end;

51




B. BLIND EQUALIZER FOR LINEAR, TIME-INVARIANT, STABLE CHANNELS BY
USING PARALLEL KALMAN FILTERS

% Filename : parkal.m
% Title : Blind equalizer for linear,time-invariant,stable channels
% by using parallel Kalman filtering algorithm
% Date of last revision : 18 Jul 1993
% Comments : This program produces an array of random digital
signal values, (either + or -1) to represent the message
signal. The length of message signal depends on the sampling
amount m(of course bigger m makes better estimation). Then
this signal is applied to a channel such as:[x(t) x(t-1) ...
x(t-n)] where the coefficiants defined by user.To estimate
the equalizer coefficiants, a rectangular window over the
received signal values, is going to be used such as[x(t)
x(t-1) ... x(t-n)] where (n+ 1) represents the # of values
taken into account by the window (and by the equalizer).
Also each symbol in the message alphabet is assigned to
a specific Kalman filter.In this way program tries to
predict real coefficients of the channel. At the end correct
channel parameter estimations appear at least at one of the
Kalman filters in the bank.If values match equalizer design
will be perfect.( Program works for alphabet size 4 only)
Averaged squared recovery error due to the channel and
equalizer,performance due to the different initializations
and normalized squared error distributions can be plotted.
Input variables :
f : The coefficients of the channel as a vector
m : Sampling amount
bi: Initial values of the coefficients at the equalizer as
a column vector
sel: Selection to continue with the calculation
sec: Options to plot different schemes for different filters
Output variables :
b* : The estimated values of the channel coefficients by
associated Kalman filter *.
% Associated functions : None

AR RAAARNRAARARNRAAANAANRNARNRARRARRRAN

clc;

clear;

f=inputCNOW ENTER the coefficients for the channel as vector(2 elements).:");
m=inputC ENTER the value of m (sampling amount)..................: )
sel=input" ENTER 1 to continue.................; )

hold off




while sel==1
bi=inputCENTER the initial coefficiants for your equalizer as column vector..:’);
n=length(f)-1;
y=sign(randn(1,(m+n)));
r=zeros(1,(n+1));
z0=ones(1,(n+1));
zl=ones(l,(n+1));
22=0nes(1,(n+1));
23 =ones(1,(n+1));
et=zeros(1,m);
errt=zeros(1,m);
for i=n+1:m+n
r(i)=(f(1:n+ 1)*y(i:-1:i-n)’);
% r(i)=(-f2:n+1).*r(i-1:-1:i-n)’ +y(i))/f(1); % Nonrecursive case
end

b0=bi; %
hO=[-1 -1]; %
sig0=h0*h0’+.01; %FOR EACH FILTER
p0=0.25; %

b1=bi;

hl=[-11}];
sigl=h1*h1’+.01;
p1=0.25;

b2=bi;

h2=[1 -1};
sig2=h2*h2’+.01;
p2=0.25;

b3 =bi;

h3=[1 1J;
sig3=h3*h3’+.01;
p3=0.25;

for j=n+1:m+n
p00=p0; %FOR EACH FILTER
pll=pl;
p22=p2;
p33=p3;

s0=sum(0.*h0’);

b0=b0+ ((1/5ig0)*h0’*(r(j)-s0));
NO=1/(sqrt(2*pi*sig0))*exp((-(r(j)-s0)."2)/2*sig0);
p0=NO0*p00+pll);

FOR EACH FILTER

R RN pn
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sl=sum(bl.*h1");
bl=bl+((1/sigl)*h1"*(e()-s1));
N1=1/(sqrt(2*pi*sig1))*exp((-(r(j)-s1).“2)/2*sigl);
pl=N1%@p22+p33);

s2=sum(b2.*h2’);

b2=b2 +((1/5ig2)*h2’ *(r(j)-s2));
N2=1/(sqrt(2*pi*sig2))*exp((-(r(j)-s2).“2)/2*sig2);
p2=N2*(p00+pl1);

s3=sum(b3.*h3’);

b3 =b3 + ((1/sig3)*h3’*(r(j)-s3));

N3 =1/(sqrt(2*pi*sig3))*exp((-(r(j)-s3)."2)/2*sig3);
p3=N3*(p22+p33);

pn=p0+pl+p2+p3; %SNORMALIZER
pO=p0/pn; %FOR EACH FILTER
pl=pl/pn;

p2=p2/pn;

p3=p3/pn;

b0=b0*P0/(P0+p1))+bl1*(pl/(p0+pl)); RFOR EACH FILTER
b1 =b2%(p2/(p2+p3))+b3*(p3/(p2+p3));
b2=b0;
b3=bl;
end

b0’ % FOR EACH FILTER
bl’
b2’
b3’

for k=n+1:m+n
% z0(k)=00(1:n+1)*r(k:-1:k-n)’); % NONRECURSIVE CASE
% zl&=0I1(1:n+1)*r(k:-1:k-n)’); %
20(k) = (z0(k-1:-1:k-n)*(-b0(2:n+ 1))+ r(k))/b0(1);
z1(&)=(z1(k-1:-1:k-n)*(-D12.a+ 1) +r&)DH1(1),
s0(k)=(1-(z0(k)"2)); %"2;
se0(k) =s0(k)/sqrt(sig0);
sl@)=(1-z1(k)"2)); %°2;
sel(k)=s1(k)/sqrt(sigl);
end

sec=input’ ENTER 1 for 1&3;2 for 2&4 channels..................");
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while sec= =1
plot(b0(1,:),b0(2,:),’'wo’); %
plot(bi(1,:),bi(2,:),’wx’) %
axis([-2 2 -2 2]);
hold on
grid;

xlabel("b0");
ylabel(’b1°);
pause
plot(sl(n+1:n+m),’w’)
axis([0 500 -1 5));

grid;
xlabel(’Iterations’);
ylabel((k)-u(k)) *);
pause
[n2,x2]=hist(se0,30);
k2=-4:.01:4,
gt=1/sqrt(2*pi)*exp((-(k2.72))/2); %

m2 =max(gt), %
[xb2,yb2]=bar(x2,((n2/max(n2))*m2)); $HISTOGRAMS
plot(k2,gt,"w—",xb2,yb2,’w’); %

ort=mean(se0); %

var=(std(se0)"*2); %

gtext([’mean=",num2str(ort)]); %

gtext([’var=",num2str(var)}); %

pause %
sec=input" ENTER 1 for 1&3;2 for 2&4 channels.................2.");
end

TRAJECTORIES

RNRARRARRRARNR

RECOVERY ERRORS
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while sec== % different parts are as shown above
plot(b1(1,:),b1(2,:),’wo0’);
plot(bi(1,:),bi(2,:),’wx’)
axis([-2 2 -2 2]);
hold on
grid;
xlabel(’b0’);
ylabel(’b1’);
pause
plot(si(n+1:n+m),’w’)
axis([0 500 -1 5));
grid;
xlabel(’lterations’);
ylabel( (u(k)-u(k)) );
pause
[n2,x2] =hist(sel,30);
k2=-4:.01:4;
gt=1/sqrt(2*pi)*exp((-(k2.2))/2);

RNRARNRARARARRN

RNRNARNN
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m2 =max(gt);

[xb2,yb2] =bar(x2,((n2/max(n2))*m2));
P‘O‘M:ﬂs"’-'-ﬂ’z.ybz,'w’);

ort=mean(sel);

var=(std(sel)*2);

gtext('mean=",num2str(ort)]);

gext(['var=",num2str(var)]); %

pause

sec=input’ ENTER 1 for 1&3;2 for 2&4 channels..................");
end

hold on
sel=inputC ENTER 1 to continue..................");
end

end;

C. BLIND EQUALIZER FOR LINEAR, TIME-INVARIANT, STABLE CHANNELS
BY USING KALMAN FILTER AND HMM ALGORITHM

% Filename : trynew.m
% Title : Blind equalizer for linear time-invariant,stable channels
% by using Kalman filtering and HMM algorithm
% Date of last revision : 25 Aug 1993
% Comments : This program produces an array of random digital NRZ, BPSK
signal values, (either + or -1) to represent the message
signal . The length of message signal depends on the sampling
amount m(of course bigger m makes better estimation).Also
applies a FEC code by HMM rate choosen by the user.Then
this signal is applied to a channel such as:[x(t) x(t-1) ...
x(t-n)] where the coefficiants defined by user.To estimate
the equalizer coefficiants, by Kalman filtering and HMM
approach.Overall impulse response of the system, sent and
recived sequences are plotted as well as the errors due to
the equalizer
Input variables :
m : Length of the message
Output variables :None
Associated functions : bpskgen.m
conenc.m
awgn.m
eqcondec.m

RARNRARANRARARRRARARNN

m=inputCENTER THE LENGTH OF MESSAGE YOU WANT:");
mes =bpskgen(m);
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sig =conenc(mes);

xn=zeros(size(sig));

aum=[1,0.6,0.4,0.3); den=2zeros(size(num)); den(1)=1;
% num=[1,0]); den=([1,-0.6};

xt=filter(num,den,sig); % channel

% xn=xt; % no noise
xn=awgn(xt,0.277); % 13 dB SNR
% xn=3awgn(xt,0.447); % 5dBSNR
% xn=awgn(xt,0.577); % 3dBSNR
% xn=awgn(xt,1); % 0dB SNR
h=dimpulse(num,den,20);

[info,tmax] =eqcondec(xn,h);

pause

subplot(223),plot(mes(1:tmax),’w’), title('actual message’)
subplot(224),plot(mes(1:tmax)-info(1:tmax),’w’), title(errors’)
end % of program

function Y = awgn(X,sigma)

% AWGN GENERATOR

% 07-31-1993

% Awgn is an m-file that adds awgn noise to the matrix X
% Where sigma is standart deviation of the noise

% Ec/No=1/(2*sigma“2).

[rr,cc]=size(X),

W =randn(rr,cc) +i*randn(rr,cc);

Y=X+sigma.*W;

dispCAWGN IS ADDED TO SIGNAL’);

function u=Dbpskgen(k)

% BPSK GENERATOR

% 08-01-1993

% This m-file accepts k the number of bits that will be returned

% in the vector u which is a BPSK sequence of {+1,-1}
u=sign(randn(size(1:k)));

disp("A random message is generated and coded in bipolar NRZ form’);

function s=conenc(u)

% CONVOLUTIONAL ENCODER

% 07-31-1993

% This m-file is a feedforward convolutional encoder for state transition

% matrix F,output sequence matrix G and input message matrix u. The number
% of convolution schemes can be increased by adding F & G matrices for new
% rates.
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disp("To use rate=1/2 convolutional encoder ENTER 1°);
disp("To use rate=1/3 convolutional encoder ENTER 2’);
disp("'To quit encoding ENTER 0°);
sel =input(’’)
while sel==1,
F=[1,2;
3.4;
1,2;
3,4];
G=[0,-1,1,-1, 1,1,-1, 1,-1;
0,-1,1, 1,-1,1,-1 -1, 1};

x=1;
s =zeros(size(G(;,1)’));
for t=1:length(u)
x=F(round(x),round(1.5 +u(t)/2));
if x==1,
sf=G(:,(round(x)+round(1.5+u(t)/2)));
elseif x==2,
sf=G(:,(round(x)+ 1 +round(1.5+u(t)/2)));
elseif x==3,
sf=G(:,(round(x) +2 +round(1.5 +u(t)/2)));
elseif x==4,
sf=G(:,(round(x)+ 3 +round(1.5 +u(t)/2)));
end % for if statement
s=[s,sf"];
end % for for loop
disp("Message is encoded’);
disp("'To quit encoding ENTER 0’);
sel =input(’’)
end % for while loop
while sel==2,
F=[1,5;
1,5;
2,6;
2,6;
3,7
3,7,

s=zeros(size(G(:,1)"));
for t=1:length(u)
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x=F(round(x),round(1.5 +u(t)/2));
if xma]|2,
sf=G(:,(round(x) + round(1.5 +u(t)/2)));
elseif x==314,
sf=G(:,(round(x) + 1 +round(1.5 +u(t)/2)));
elseif x==5]6,
sf=G(:,(round(x) + 2 +round(1.5 +u(t)/2)));
elseif x==7|8,
sf=G(:,(round(x)+ 3 +round(1.5+u(t)/2)));
end % for if statement
s={s,sf);
end % for for loop
disp("Message is encoded’);
disp('To quit encoding ENTER 0’);
sel =input(”’)
end % for while loop

function [uh,tmax]=eqcondec(x,h)
% EQUALIZER AND CONVOLUTIONAL DECODER
% 07-30-1993
% This m-file is a channel equalizer and convolutional decoder for state
% transition matrix F,output sequence matrix G ,channel parameter matrix
% x and input signal s.
% Simply uses the Kalman filtering algorithm with Hidden Markov Models.
% The number of convolution schemes can be increased by adding F & G matrices
% for new rates
disp("To use rate=1/2 convolutional decoder ENTER 1°);
disp('To use rate=1/3 convolutional decoder ENTER 2’);
sel=input(’’)
if sel==1,
F=[1,2;
34;
1,2;
3,4);
G=[0,-1,1,-1, 1,1,-1, 1,-1;
0,-1,1, 1,-1,1,-1,-1, 1};
end % for if statement
if sel==2,
F=[1,5;
1,5;
2,6;
2,6;
3,7,
3,7,
4.8,
4,8];
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nf=length(G(:,1));
ns=length(F(;,1));

n=1i§; % order of the filter
th=2zeros(n,ns);
th(1,:)=5.0%ones(1,ns);
e2=zeros(ns,1);

P=1%eye(n);
tmin=round(n/nf)+1;
tmax =floor(100/nf)-1;
point=zeros(tmax + 1,ns);
uhat=zeros(tmax + 1,ns);
for tk=tmin:tmax,
phi=toeplitz(x(tk*nf + 1:tk*nf+ nf),x(tk*nf + 1:-1:tk*nf-n+2))’;
factl =P*phi;
fact2=fact'’*phi;
fact=inv(eye(length(fact2)) + fact2);
K=fact]*fact;
en2=inf*ones(ns, 1); % start error for new layer at infinity
if ns==4,
for j=1:ns % states
for i=1:2 % inputs
m=F(,i);
if m==1,
v=G(:,(m+i))-phi’*th(.,j);
elseif m= =2,
v=G(;,(m+ 1 +i))-phi’*th(.,j);
elseif m==3,
v=G(:,(m+2+1))-phi’*th(:,j);
elseif m= =4,
v=G(:,(m+3+i))-phi’*th(:,j);
end %
etemp =e2(j)+ v’ *fact*v,
if etemp <en2(m),
en2(m)=etemp;
thn(:,m)=th(:,j)+K*v;
point(tk+ 1,m)=j;
uhat(tk +1,m)=4i;
end % for if statement
end % for loop of i
end % for loop of j
end % for while loop

AR

RATE 1/2

R N® N
RN A" W

60




if ns==8,
for j=1:ns % states
fori=1:2 % inputs
m=F(,i);
ifm==1]2,
v=G(:,(m+i))-phi’*th(:,j);
elseif m==3|4,
v=G(;,(m+ 1 +i))-phi’*th(:,j);
elseif m==5]6,
v=G(:,(m+2+1))-phi’*th(:,j);
elseif m==7|8,
v=G(:,(m+3 +i))-phi’*th(:,j);
end
etemp =e2(j) + v’ *fact*v;
if etemp <en2(m),
en2(m)=etemp;
thn(:,m)=th(:,j)+ K*v;
puint(tk + 1,m)=j;
uhat(tk + 1,m)=i;
end % for if statement
end % for loop of i
end % for loop of j
end % for while loop
th=thn;
e2=en2;
P=P-fact]*fact*factl’;

end
[em,m]}=min(e2),;
thf=th(:,m);

% estimated message
whilem ~= 0,

uh(tk)=2*uhat(tk + 1,m)-3;
m=point(tk + 1,m);
tk=tk-1;

end
disp(’Signal is decoded, now look to the graphs’);
pause

clg;

hold off
c=conv(h,thf);
subplot(221), plot(c,’ow’),title(’'impulse resp of ch+eq’)
% nu =min([length(u), length(uh)));
subplot(222),plot(uh(1:tmax),’w"), title('estimated message’)
end % of program
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D. SIMULATION OF THE HMM AND KALMAN FILTERING ALGORITHM IN
FLAT RAYLEIGH FADING CHANNEL

% Filename : simul.m

% Title : Simulation of combined equalizer and FEC decoder (HMM and
% Kalman filtering algorithm) in flat Rayleigh fading channel

% Date of last revision : 15 Sep 1993

% Comments : This program simulates the combined equalizer and FEC decoder
(HMM and Kalman filtering algorithm) in flat Rayleigh fading
channel. Works similar to previuos programs, uses DBPSK
instead of BPSK.Industrial standart, code rate 1/2 & constraint
length 7 FEC encoder is employed

% Input variables :

m : Length of the message sequence

% Output variables :None

% Associated functions : awgn.m

bpskgen.m

conenc64.m

difecod.m

pskmod.m

fade.m

pskdmod.m

eqcod64.m

RARNAN

R
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m=inputCENTER THE LENGTH OF MESSAGE YOU WANT:’);
mes=bpskgen(m);

cme=conencb4(mes,F64,G64);

len=Ilength(cme);

dcm=difecod(cme);

sig=pskmod(dcm,7);

sigl =sig’;

sig2=sigl(:);

sig3 =exp(i*pi/4)*sig2;

dispCPOWER IS SPLITTED TO I & Q CHANNELS’);
I=fade(0.01,(en+ 1)*7);

Q=fade(0.01,(en+ 1)*7);

sig4 =1.*real(sig3)+j*(Q. *imag(sig3));

disp('Rayleigh fading is applied to signal’);
sigS=awgn(sig4,0.277);

[cmm,a]}=pskdmod(sig,7,len);

[info,tmax] =eqcod64(cmm,F64,G64);

pause

subplot(211),plot(mes(1:tmax),’w’), title('actual message’)
subplot(212),plot(info(1:tmax),’w’),title(’received message’)
pause

print -dmeta;
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clg:
subplot(211),plot(mes(1:tmax)-info(1:tmax),’w"), title(errors’)
end % of program

function s=conenc64(u,F64,G64)
% CONVOLUTIONAL ENCODER
% 08-30-1993

% This m-file is a feedforward industrial standart convolutional encoder
% for state transition matrix F64,output sequence matrix G64 and input
% message matrix u. F64 & G64 matrices are given as a file named incod64.mat
% Be sure to load that file before working with this function
x=1;
s=zeros(size(G64(:,1)"));
for t=1:length(u)
x=F64(round(x),round(1.5 +u(t)/2));
if x==1]9,
sf=G64(:,(0+round(1.5+u(t)/2)));
elseif x==21{10,
sf=G64(:,(2+round(1.5+u(t)/2)));
elseif x==3]11,
sf=G64(:,(4 +round(1.5+u(t)/2)));
elseif x==4]|12,
sf=G64(:,(6+round(1.5+u(t)/2)));
elseif x==5}13,
sf=G64(;,(8 + round(1.5+u(t)/2)));
elseif x==6/14,
sf=G64(:,(10+round(1.5+u(t)/2)));
elseif x==7|15,
sf=G64(:,(12+round(1.5+u(t)/2)));
elseif x==8] 16,
sf=G64(:,(14+round(1.5+u(t)/2)));
elseif x==17|25,
sf=G64(:,(16+round(1.5+u(t)/2)));
elseif x==18{26,
sf=G64(:,(18+round(1.5+u(t)/2)));
elseif x==19|27,
sf=G64(:,(20+round(1.5 +u(t)/2)));
elseif x==20|28,
sf=G64(:,(22 +round(1.5+u(t)/2)));
elseif x==21}29,
sf=G64(:,(24 + round(1.5+u(t)/2)));
elseif x==22]30,
sf=G64(:,(26+round(1.5 +u(t)/2)));
elseif x==23]31,
sf=G64(:,(28 + round(1.5 +u(t)/2)));
elseif x==24{32,
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sf=G64(:,(30+round(1.5+u(t)/2)));
elseif x==33|41,
sf=G64(:,(32+round(1.5 +u(t)/2)));
elseif x==34]42,
sf=G64(:,(34 +round(1.5 +u(t)/2)));
elseif x==35]43,
sf=G64(:,(36+round(1.5+u(t)/2)));
elseif x==36|44,
sf=G64(:,(38 +round(1.5+u(t)/2)));
elseif x==37|45,
sf=G64(:,(40 +round(1.5+u(t)/2)));
elseif x==38|46,
sf=G64(:,(42+round(1.5 +u(t)/2)));
elseif x==39]47,
sf=G64(;,(44 + round(1.5+u(t)/2)));
elseif x==40|48,
sf=G64(:,(46 +round(1.5+u(t)/2)));
elseif x==49]57,
sf=G64(:,(48 +round(1.5+u(t)/2)));
elseif x==50|58,
sf=G64(:,(50+round(1.5+u(t)/2)));
elseif x==51|59,
sf=G64(:,(52+round(1.5+u(1)/2)));
elseif x==52|60,
sf=G64(:,(54 +round(1.5+u(t)/2)));
elseif x==53|61,
sf=G64(:,(56+round(1.5+u(t)/2)));
elseif x==54|62,
sf=G64(:,(58 + round(1.5+u(t)/2)));
elseif x==55)63,
sf=G64(:,(60+round(1.5+u(t)/2)));
elseif x==56|64,
sf=G64(:,(62+round(1.5+u(t)/2)));
end % for if statement
s=[s,sf’];
end % for for loop
disp(FEC is applied to Message(ENCODED)’);

function [uh,tmax]=eqcod64(x,F64,G64)

% EQUALIZER AND CONVOLUTIONAL DECODER

% 08-21-1993

% This m-file is a channel equalizer and convolutional decoder for state

% transition matrix F64,output sequence matrix G64,channel parameter matrix
% x and input signal s.

% Industrial standart Rate 1/2 code with constraint length 7 is used F64 &
% (64 matrices are defined in incod64.mat. Be sure it is loaded.

L3
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% Simply uses the Kalman filtering algorithm with Hidden Markov Models.
% The number of convolution schemes can be increased by adding F & G matrices
% for new rates
nf=length(G64(:, 1)),
ns=length(F64(:,1));
n=15; % order of the filter
th=zeros(n,ns);
th(1,:)=5.0%0nes(1,ns);
e2=zeros(ns,1);
P=1%eye(n);
tmin=round(n/nf)+ 1;
tmax = floor(100/nf)-1;
point=zeros(tmax + 1,ns);
uhat=zeros(tmax + 1,ns);
for tk=tmin:tmax,
phi=toeplitz(x(tk*nf+ 1:tk*nf+nf),x(tk*nf+ 1:-1:tk*nf-n+2))’;
fact] =P*phi;
fact2=fact1’*phi;
fact=inv(eye(length(fact2)) +fact2);
K =fact]*fact;
en2=inf*ones(ns,1); % start error for new layer at infinity
for j=1:ns % states
fori=1:2 % inputs
m=F64(j,i);
ifm==1|9,
v=G64(:,(0+i))-phi’*th(.,j);
elseif m==2]10,
v=G64(:,(2+1))-phi’*th(.,j);
elseif m==3]11,
v=G64(:,(4+1))-phi’*th(.,j);
elseif m==4|12,
v=G64(:,(6+i))-phi’*th(:,j);
elseif m==5}13,
v=G064(;,(8 +i))-phi’*th(,j);
elseif m==6| 14,
v=G64(:,(10+i))-phi’*th(.,j);
elseif m==7|{15,
v=G64(:,(12+i))-phi’*th(.,j);
elseif m==8]16,
v=G64(:,(14 +i))-phi’*th(:,j);
elseif m==17|25,
v=G64(:,(16+1i))-phi’*th(:,j);
elseif m==18}26,
v=G64(:,(18 +1))-phi’*th(,j);
elseif m==19|27,
v=G64(:,(20+1))-phi’*th(.,j);
elseif m==20|28,
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v=G64(:,(22+i))-phi’*th(.,j);
elseif m==21{29,
v=G64(:,(24 +i))-phi’*th(:,j);
elseif m==22|30,
v=G64(:,(26+1))-phi’*th(:,j);
elseif m==23|31,
v=G64(:,(28 +i))-phi’*th(:,j);
elseif m==24|32,
v=G64(:,(30+1i))-phi’*th(:,j);
elseif m==33|41,
v=G64(:,(32+i))-phi"*th(:,j);
elseif m==34|42,
v=G64(:,(34+i))-phi’*th(.,j);
elseif m==35|43,
v=G64(:,(36 +i))-phi’*th(: j);
elseif m==36|44, ‘
v=G64(:,(38+1i))-phi’*th(.,j);
elseif m==37|45,
v=G64(:,(40+i))-phi’*th(:,j);
elseif m==38{46,
v=G64(;, (42 +i))-phi**th(.,j);
elseif m==39|47,
=G64(;,(44 +i))-phi"*th(:,j);
elseif m==40|48,
V=G64(-s(46+1))‘Phl"th(,J),
elseif m==49{57,
v=0G64(:,(48 +i))-phi’*th(.,j);
elseif m==50|58,
=G64(:,(50+1))-phi’*th(:,j);
elseif m==51|59,
=G64(:,(52 +1))-phi’*th(.,j);
elseif m==52|60,
v=G64(:,(54 +1))-phi’*th(.,j);
elseif m==53|61,
v=G64(:,(56+i))-phi’*th(:,j);
elseif m==54{62,
v=G64(:,(58 +i))-phi’*th(:,j);
elseif m==55/63,
v=G64(:,(60+i))-phi’*th(:,j);
elseif m==56|64,
V=Gﬁ4(3’(62+i))‘Phi’*th(»l),
end
etemp =e2(j)+ v’ *fact*v,
if etemp <en2(m),
en2(m)=etemp;
thn(;,m)=th(:,j) +K*v;
point(tk + 1,m)=j;
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uhat(tk+ 1,m)=i;
end % for if statement
end % for loop of i
end % for loop of j
th=thn,
e2=en2;
P=P-fact] *fact*factl’;
end
[em,m}=min(e2);
thf=th(;,m);
% estimated message
whilem ~= 0,
uh(tk) =2*uhat(tk + 1,m)-3;
m=point(tk + 1,m);
tk=tk-1;
end
disp(’Signal is decoded’);

function out=pskmod(in,N)

% PSK MODULATOR

% 09-03-1993

% This M file accepts the differentially encoded vector in

% and # of samples per symbol N. Then generates a matrix
% with dimensions (length(in)xN)

out=in’*ones(1,N);

dispCMESSAGE DPSK MODULATED");

function [out,a] =pskdmod(sig,N,m)
% PSK DEMODULATOR
% 09-02-1993
% This function accepts fading and AWGN effected sig,
% # of samples per symbo! N and total # of symbols m
% Then for each symbol takes the difference and sum of
% present and past symbol sums and squares their absolute
% values. If difference <sum decides input bit is O(rep. -1)
o=ones(1,m);
for i=2:m+1,
dif(i-1)=abs(sum(sig(i,:))-sum(sig(i-1,:))).*2;
su(i-1)=abs(sum(sig(i,:)) +sum(sig(i-1,:)))."2;
met(i-1)=dif(i-1)-su(i-1);
if met(i-1)<0;
o(i-1)=-1;
end
end
a=met;
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out=o,
disp(SIGNAL IS DEMODULATED’);

function difout=difecod(n)
% DIFFERENTIAL ENCODER
% 08-31-1993

% This M file accepts an input vector n(which is bipolar NRZ
% coded form of output sequence) and differentially encodes it
% with a reference bit 1(which will be inserted at the beginning

% of the vector.
y=[1,zeros(1,length(n))];
for i=1:length(n),
if n(i)==-1,
n(i)=0;
end
y(i+1)=xor(n(i),y (D),
end
for j=1:length(n),
if n(i)==0,
n(@i)=-1;
end
if y(i)==0,
y()=-1;
end
end
difout=y;
dispCMESSAGE DIFFERENTIALLY ENCODED’);

function out="fade(dps,n)

% FADING GENERATOR

% 09-04-1993

% This function accepts differential phase shift dps and
% # of samples n. Then creates n normal distributed
% variables passes these through two RC filters
s=exp(-dps/2.146193);

ss=((1-s"2)"3/(1+5*2))".25;

b=[ss];

a=|[1 -s];

t=randn(n,1);

k=filter(b,a,1);

out=filter(b,a,k);
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